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Two General Ideas
• When making and using mathematical models for cost estimating 

and analysis, one should:
– Base the models on economic or physical principles, OR
– Base the models on clearly described empirical evidence
– Develop and apply the models with careful mathematics and statistics

• Benefits:
– Maximal useful output
– Straightforward explanations of the work
– Ability to use discrepancies to improve the models

• Cost estimating and analysis generally belongs to the discipline of 
system identification, and methods of this discipline are useful to 
cost analysts

Three examples taken from “The Cost Analyst’s Companion, illustrate these ideas
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Analysis of Crawford Cost Progress Curves

•Wright and Crawford models are empirical
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Having chosen the Crawford model, use correct numerical values.



P A G E  4

Efficient treatment of Crawford lot costs

When treating Crawford lots, use accurate numerical values of
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They’re easy to generate as visual basic routines in MSExcel, or with

Pascal or C/C++ routines.  With them, one can treat parameter identification

problems directly, without clumsy iteration and without using inaccurate 

approximations.

A(L, U, b), related to the Riemann zeta function                , is a special function

of particular interest to cost professionals.
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Example VB routine
 
Function zze(l, u As Long, b As Double) As Double 
 
Dim bb(1 To 10) As Double 
Dim c, s, t, uu, ll, tu, tl, h, r, kk, p, q, uc, lc, u2, l2 As Double 
Dim i As Integer 
 
bb(1) = 0.16666667: bb(2) = -0.033333333: bb(3) = 0.023809523: bb(4) = -
0.0333333333: bb(5) = 0.075757576 
bb(6) = -0.25311355: bb(7) = 1.16666667: bb(8) = -7.0921569: bb(9) = 54.971178: 
bb(10) = -529.12424 
c = 1 + b 
uu = u + 0.5 
ll = l - 0.5 
uc = uu ^ c 
lc = ll ^ c 
u2 = uu ^ (-2): l2 = ll ^ (-2) 
p = uc / c: q = lc / c 
s = p - q 
h = 2: r = 1: i = 0: kk = b + 2: ll = b + 3 
tl = 1 
Do 
   h = 0.25 * h: i = i + 1: r = 2 * i * (2 * i - 1) * r 
   kk = kk - 2: ll = ll - 2 
   p = kk * ll * p * u2 
   q = kk * ll * q * l2 
   t = (1 - h) * bb(i) * (p - q) / r 
   tl = Abs(t / s) 
   s = s - t 
Loop While ((tl > 0.00000001) And (i <= 9)) 
 
zze = s 
 
End Function 

User never sees this, of course; just inserts zze(L, U, b) in a MSExcel cell.
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Typical Crawford Parameter Identification

{ }Miii U,L,c 1 ,Given a set of M lot costs, and the lots’ start and end units,

find T1 and b of the “best fit” Crawford curve.  Treat directly with
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and no need to use linear regression of ln(lot-averaged cost) on ln(plot point), with iteration on b.
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Crawford Plot Points

x of lot with first unit L and last unit U is defined byPlot point 
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What About a  Rational Cost Progress Model?

• Cost progress comes from
– Production workers’ learning their tasks
– Re-design of product for lower-cost production

• Discrete elements embodied in integrated circuits
• Re-designed structural members for cheaper production

– Improved production facility
• Better jigs, fixtures
• Better layout

– Lower-cost suppliers
• Better make-buy decisions

All but the first of these require investments, and time, to make them happen.

When is it in the manufacturer’s interest to make the investments?
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Ingredients:

• Model of variation of unit cost with investment

• Model of demand schedule seen by manufacturer
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Variation of Unit Cost with InvestmentVariation of Unit Cost with Investment
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This f(I) builds in diminishing returns, and a minimum unit cost
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Demand Schedules

"MDAP"
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“MDAP” and elastic demand schedules lead to similar results.
We’ll explore “MDAP.”
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Manufacturer’s Optimization Problem

Choose investment sequence I1, I2, …, IN-1 and price sequence p1, p2, …, pN to solve
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That is, choose investment and price sequences to maximize net present value of profit,

subject to some obviously necessary constraints, and one not-so-obvious constraint.

The δmax constraint reflects the fact that inventing and implementing improvements takes time,

and investments may be constrained by capital rationing, internal to the firm if not external.
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Solution for “MDAP” Demand Schedule
For this demand schedule, manufacturer obviously sets price at the “tipping” price p0

and builds the externally determined quantity Q0.  The solution of the optimization problem

is  
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ExampleExample
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A More Complex Example
For the “MDAP” example there is cost progress, but no price progress.  More complex

examples show similar investment patterns, and also exhibit price progress.

Optimal Price and Cost, Demand Schedule Elasticity ≡ 4

1

10

100

1 10 100 1000 10000 100000

Lot Midpoint

C
on

st
an

t D
ol

la
rs

Price Cost



P A G E  16

Curves Typically have three shape parametersCurves Typically have three shape parameters

H
C

≡
∆
* (“Headroom”; measures excess of initial cost over best cost)

*CQS 0α≡ (“Sensitivity”; ratio of “good” lot cost to e-folding investment)

L ≡ αδmax (“Limit”; ratio of maximum investment to e-folding investment)

These, together with buy profile and the value of C*, determine the cost progress curve
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Qualitative relations of parameters to product, production 
characteristics

Qualitative relations of parameters to product, production 
characteristics

H
C

≡
∆
*

Leads to larger H Leads to smaller H

•Hurried EMD; great time pressure 
for item

•Firm has little experience 
producing similar items

•Substantially automated plant

H is large when production begins at unit cost well above best unit cost
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Qualitative relations of parameters to product, production 
characteristics

Qualitative relations of parameters to product, production 
characteristics

S NC≡ α *

Leads to smaller SLeads to larger S

•Flexible, relatively inexpensive 
tooling

•Many steps in production

•Extensive, expensive specialized 
tooling

•Substantially automated facility

S is large when lot cost is large compared to e-folding investment
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Qualitative relations of parameters to product, production 
characteristics

Qualitative relations of parameters to product, production 
characteristics

L ≡ αδmax

Tends to larger L Tends to smaller L

•Product dominant in firm

•Competition or threat thereof

•Great confidence in total quantity

•Sole-source procurement

•Uncertain future
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Quantitative relations of parameters to product, production 
characteristics

Quantitative relations of parameters to product, production 
characteristics

• Three binary variables:
– f1:  1 => “complex” product

– f2:  1 => “automated” manufacturing

– f3:  1 => “competition” or threat thereof
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Relating curve parameters to product and plantRelating curve parameters to product and plant

H H f f f= 0 1 2 3
1 2 3β β β

Three translog functions:

and similar translog functions for S and L.

Full disclosure:  These are traditional functions, chosen arbitrarily!

(Developing rational model = research opportunity)
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Results
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Application to a System Not Used in 
Calibration
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Lessons learned

• When analyzing or forecasting cost progress, consider
– Nature of the product
– Nature of the manufacturing process
– Business environment of the firm

• Use readily available processing power to apply rational (well, 
anyhow, partly rational) model
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Aircraft Spares Requirements
C-5B On-Equipment Removals (Source: AF MODAS)
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J. Wallace:  Modeling removals as simply proportional to flying hours over-predicted 
C-5B experience in Operation Desert Storm by more than 200%.
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Statistical Models

Continuous Process: Exponential/Poisson

Physics:  Each instant is equally likely to see a failure

Distribution of time between failures:            (Exponential distribution)

Probability of n failures in time T:                      (Poisson distribution)

Expected failures:                      Variance:  

T
n

e
!n
)T( λ−λ

te λ−λ

Tλ Tλ

Episodic Process:  Binomial

Physics:  Each event sees a failure, with probability P

Distribution of events between failures:  

Probability of n failures in M events:  

Expected failures:  Mp       Variance:  MP(1-P)
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A Physics-Based Model

• Each cold-start cycle in aircraft operations causes failures by a 
process having a binomial distribution with probability Pcc

• Each warm-start cycle causes failures by a process having a 
binomial distribution with probability Pwc

• Each daily cycle of temperature and humidity variations causes 
failures by a process having a binomial distribution with 
probability Pgc

• Flying induces failures by a process having the Poisson 
distribution with parameter λFH

• Each period has sufficiently many hours and cycles that 
approximating the discrete distributions by normal distributions
with the same means and variances is acceptable

• Identifiable trends should be treated by standard means (e. g. 
Box-Jenkins-Reinsel shear transformation)
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The Current Model

• In each observation period, aircraft experience Ncc cold cycles, 
Nwc warm cycles, and Ng diurnal cycles; they fly for tf hours

• Mean and variance of the distribution of the number of failures:

ffwcwcccccgg tPNPNPN λµ +++=

ffwcwcwcccccccggg tPPNPPNPPN λσ +−+−+−= )1()1()1(2
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Calibration

Given (Ncc, Nwc, Ng, tf, removals) for periods 1, 2, …, M, estimate Pg, Pcc, Pwc, and λf:
The present model is a 4-parameter model.

Note that variance of removals depends on Ncc, Nwc, Ng, tf, so multilinear
regression isn’t a maximum-likelihood estimator.  But it is simple enough
to write down the likelihood of the observed sequence of removals, and 
calibrate the model by solving:
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Solver in MSExcel may do the job.  (It’s worthwhile to check any optimizer’s work.)
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Results:  C-17 Fleet
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F-16C Results 
F-16C Removals at Aviano predicted from all F-16C data
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Physics-Based Models Give 
Helpful Information

C-5B F-16C (Aviano)
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Physics-based models show fractions of removals attributed to specific causes
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The Norden-Rayleigh model collapses data from many DoD 
development programs onto one curve

The Norden-Rayleigh model collapses data from many DoD 
development programs onto one curve
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Using the N-R model to estimate cost-to-go and time-to-
go, given ACWP data

Using the N-R model to estimate cost-to-go and time-to-
go, given ACWP data

• Apply a parameter-identification method to estimate time-scale 
parameter a and cost-scale parameter d, with consistent 
estimates of dispersion (uncertainty).  Many methods are 
available.

• Estimate completion time and total cost, with dispersion 
(uncertainty) estimates, from the a and d estimates.
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One method: Apply MMAEOne method: Apply MMAE

• System identification technique, developed for engineering work
• Applying it to EV analysis was Mark Gallagher’s good idea
• Multiple Model Adaptive Estimation is a method for estimating 

parameters of dynamic systems, given time-history data.

• Uses set of Kalman filters, which require a parametric model for 
the time evolution of the system.

Gallager, M., and D. Lee, “Final-Cost Estimates for Research &
Development Programs Conditioned on Realized Costs,” 
Mil. Ops Rsch. 2, 1996, pp 51 - 65
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Basis for Kalman Filter
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Kalman filterKalman filter

• Given a system evolution model, Kalman filter estimates system 
state as a linear combination of the state predicted by the 
evolution model, and noisy observations of the state.  For us, 
“state” is earned value v.

• Parameter k is called the gain of the filter

v est k v pred k v obs( ) ( ) ( ) ( )= − +1

Maybeck, P., “Stochastic Models, Estimation and Control: Volume 1,
Academic Press, New York, 1979
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N-R time-evolution modelN-R time-evolution model

If v = d[1 - exp(-at2)], then

dv
dt

a d v
d a
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Evolution of earned valueEvolution of earned value

If v(t0) = v0, then for t > t0,
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MMAEMMAE

• MMAE considers a bank of Kalman filters, each determined by three 
parameters (a, d, k), and determines probability that these are correct, 
given the ACWP data.

Maybeck, P., “Stochastic Models, Estimation, and Control: Volume 2
Academic Press, New York, 1982

Maybeck, P. S., and K. P. Hentz, “Investigation of Moving-Bank, Multiple
Model Adaptive Algorithms,” AIAA Journal of Guidance, Control, and 
Dynamics 10, 1987, pp. 771-101
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Outputs from MMAE parameter identificationOutputs from MMAE parameter identification

• Marginal distribution functions of total cost and total time, 
conditioned on the data

• Joint bivariate PDF of total cost and total time, conditioned on 
the data

• Can present costs either as $BY or as $TY

Full disclosure:  the statistical analyses for MMAE are valid only for linear evolution

equations.  As others have done, we used the results anyway, for a non-linear

equation.  A remedy might be, to linearize the evolution equation about some

representative solution.
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An ExampleAn Example
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Optimal filter output and dataOptimal filter output and data

Comparison of MMAE Expected Filter Output and Data
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Norden-Rayleigh ExtrapolationNorden-Rayleigh Extrapolation

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7

Y ears  fro m  sta rt

C
um

ul
at

iv
e 

ex
pe

nd
itu

re
s 

(C
on

st
. d

ol
la

rs
)

D ata
M M A E  extrapo la tion



P A G E  45

Marginal distribution of completion timeMarginal distribution of completion time

CDF of Completion Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 2.0 4.0 6.0 8.0 10.0 12.0

Years from Start

Pr
ob

ab
ili

ty
 o

f A
ch

ie
vi

ng
 C

om
pl

et
io

n 
Ti

m
e

© Logistics Management Institute



P A G E  46

Marginal distribution of total costMarginal distribution of total cost

CDF of Total Cost
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Bivariate distribution of cost and timeBivariate distribution of cost and time
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A General Point of View

• When making and using mathematical models for cost estimating 
and analysis, one should:
– Base the models on economic or physical principles, OR
– Base the models on clearly described empirical evidence
– Develop and apply the models with careful mathematics and statistics

• Benefits:
– Maximal useful output
– Straightforward explanations of the work
– Ability to use discrepancies to improve the models

• Cost estimating and analysis generally belongs to the discipline of 
system identification, and methods of this discipline are useful to 
cost analysts


	Mathematical Methods for Cost Estimating and Analysis
	Two General Ideas
	Analysis of Crawford Cost Progress Curves
	Efficient treatment of Crawford lot costs
	Example VB routine
	Typical Crawford Parameter Identification
	Crawford Plot Points
	What About a  Rational Cost Progress Model?
	Ingredients:
	Variation of Unit Cost with Investment
	Demand Schedules
	Manufacturer’s Optimization Problem
	Solution for “MDAP” Demand Schedule
	Example
	A More Complex Example
	Curves Typically have three shape parameters
	Qualitative relations of parameters to product, production characteristics
	Qualitative relations of parameters to product, production characteristics
	Qualitative relations of parameters to product, production characteristics
	Quantitative relations of parameters to product, production characteristics
	Relating curve parameters to product and plant
	Results
	Application to a System Not Used in Calibration
	Lessons learned
	Aircraft Spares Requirements
	Statistical Models
	A Physics-Based Model
	The Current Model
	Calibration
	Results:  C-17 Fleet
	F-16C Results
	Physics-Based Models Give Helpful Information
	The Norden-Rayleigh model collapses data from many DoD development programs onto one curve
	Using the N-R model to estimate cost-to-go and time-to-go, given ACWP data
	One method: Apply MMAE
	Basis for Kalman Filter
	Kalman filter
	N-R time-evolution model
	Evolution of earned value
	MMAE
	Outputs from MMAE parameter identification
	An Example
	Optimal filter output and data
	Norden-Rayleigh Extrapolation
	Marginal distribution of completion time
	Marginal distribution of total cost
	Bivariate distribution of cost and time
	A General Point of View

